РОССИЙСКАЯ ФЕЛЕРАЦИЯ

(19) RU (11) **2 680 656** (13) C1

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (51) МПК *G02B 17/08* (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: действует (последнее изменение статуса: 27.02.2019)

(21)(22) Заявка: 2018113014, 10.04.2018

(24) Дата начала отсчета срока действия патента: 10.04.2018

Дата регистрации: **25.02.2019**

Приоритет(ы):

(22) Дата подачи заявки: 10.04.2018

(45) Опубликовано: <u>25.02.2019</u> Бюл. № <u>6</u>

(56) Список документов, цитированных в отчете о поиске: RU 2003145 C1, 15.11.1993. RU 2012907 C1, 15.05.1994. US 2730926 A1, 17.01.1956. US 4061420 A1, 06.12.1977. US 3438695 A1, 15.04.1969.

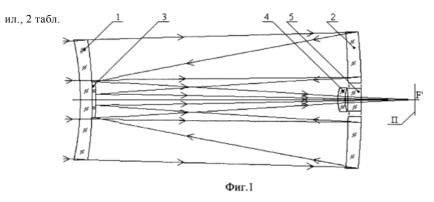
Адрес для переписки:

188540, Ленинградская обл., г. Сосновый Бор, ул. Ленинградская, 29, литер Т, АО "НИИ ОЭП", зам. Генерального директора-главный инженер Дундин Павел Иванович

(72) Автор(ы):

Лебедев Олег Анатольевич (RU), Солк Сергей Вольдемарович (RU), Шевцов Сергей Евгеньевич (RU)

(73) Патентообладатель(и):


Акционерное общество "Научноисследовательский институт оптикоэлектронного приборостроения" (АО "НИИ ОЭП") (RU)

(54) ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕРМОНЕРАССТРАИВАЕМЫЙ ОБЪЕКТИВ

(57) Реферат:

Объектив может быть использован в оптико-электронных системах и при необходимости высокого уровня термостойкости. Объектив содержит установленные по ходу луча мениск, обращенный вогнутостью к пространству предметов, линзу Манжена в виде вогнутого мениска с отверстием в центральной зоне, обращенного вогнутостью к пространству предметов, вторичное выпуклое зеркало, обращенное выпуклостью к пространству изображений, двухлинзовый компенсатор, первая линза которого - отрицательная выпукловогнутая, вторая - отрицательная. Эквивалентное фокусное расстояние компенсатора - (0,15-0,20) f', где f' - фокусное расстояние объектива. Все оптические элементы изготовлены из одного оптического материала с коэффициентом дисперсии 60≤v_d≤70 и температурным коэффициентом линейного расширения $0.2 \times 10^{-6} \le \alpha_t \le 8.5 \times 10^{-6} \circ C^{-1}$, который отличается от температурного коэффициента линейного расширения материала, из которого изготовлены механические части объектива, не более чем на 1.5×10^{-6} °C⁻¹. Технический результат создание длиннофокусного объектива, термонерасстраиваемого в диапазоне от -40°C до +50°C, с высоким качеством изображения в широком спектральном диапазоне по всему полю зрения и сохраняющего герметизацию при значительных перепадах температур, упрощение конструкции и уменьшение габаритов и массы. 1 з.п. ф-лы, 3

Стр. 1 из 7

Изобретение относится к области оптического приборостроения, а именно к классу зеркально - линзовых объективов, в том числе длиннофокусных, и может быть использовано в оптико- электронных системах обнаружения и наблюдения удаленных объектов, а также в других областях техники, где необходимы оптические объективы, обладающие высоким уровнем термостойкости.

Известен малолинзовый термонерасстраиваемый объектив, принятый за аналог к заявляемому изобретению [Авт. Свид. SU №1744682, МПК G02B 9/04, дата приор. 18.08.1989, опубл. 30.06.1992, Бюл. №24]. Объектив выполнен в виде двух оптических компонентов, последовательно расположенных на оптической оси. Первый компонент состоит из отрицательного мениска, обращенного выпуклой поверхностью к предмету. Второй компонент положительный, состоит из плосковыпуклой линзы, обращенной плоской поверхностью к изображению, и киноформного оптического элемента, выполненного ионной полировкой на плоской поверхности положительной линзы. Как указывается в описании объектива, он обеспечивает апохроматическую коррекцию в широком температурном диапазоне.

Основные недостатки объектива-аналога заключаются в том, что он сложен в изготовлении, усложнение возникает вследствие необходимости выполнения киноформного элемента ионной полировкой на плоской поверхности линзы с обеспечением глубины обработки зон киноформного элемента, не превышающей 1,5 мкм. Использование киноформного элемента, обладающего невысокой дифракционной эффективностью в широком спектральном диапазоне, может приводить к появлению ложных изображений. Объектив имеет малое относительное отверстие (1:16), большое расстояние от первой поверхности объектива до фокальной плоскости 4024 мм, большие весогабаритные характеристики.

Наиболее близким по совокупности существенных признаков к предлагаемому изобретению является зеркально - линзовый объектив [Патент RU №2003145, МПК G02B 17/08, дата приор. 27.03.1992, опубл. 15.11.1993, Бюл. №41-42], выбранный нами в качестве прототипа. Объектив состоит из последовательно установленных по ходу луча двухлинзового коррекционного элемента, линзы Манжена, вторичного зеркала и двухлинзового компенсатора, расположенного между вторичным зеркалом и плоскостью изображения. Фокусное расстояние объектива 1000 мм. Недостатками объектива является его терморасстраиваемость, недостаточно большое фокусное расстояние, значительное количество оптических элементов, что обусловливает уменьшение светопропускания, усложняет изготовление и юстировку.

Сущность изобретения заключается в следующем.

Задачей изобретения является создание длиннофокусного объектива, термонерасстраиваемого в широком температурном диапазоне, обеспечивающего высокое качество изображения в широком спектральном диапазоне.

Техническим результатом,, достигаемым при осуществлении изобретения, является создание длиннофокусного объектива, термонерасстраиваемого в широком температурном диапазоне (от -40°C до +50°C), обеспечивающего высокое качество изображения в широком спектральном диапазоне, сохраняющего герметизацию при значительных перепадах температур и высокое качество изображения по всему полю зрения. Значительное увеличение фокусного расстояния объектива достигается при упрощении и удешевлении конструкции, уменьшении габаритов и массы.

Указанный технический результат достигается тем, что в зеркально - линзовом объективе, содержащем расположенные по ходу луча мениск, обращенный вогнутостью в сторону пространства предметов, линзу Манжена, представляющую собой вогнутый мениск с отверстием в центральной зоне, обращенный вогнутостью в сторону пространства предметов, вторичное выпуклое зеркало, обращенное выпуклостью в сторону пространства изображений, двухлинзовый компенсатор, расположенный между вторичным зеркалом и плоскостью изображения, первая линза которого является отрицательной, в соответствии с заявляемым техническим решением первая линза компенсатора выполнена выпукловогнутой, вторая линза компенсатора выполнена отрицательной, а эквивалентное фокусное расстояние двухлинзового компенсатора составляет (0,15-0,20) f', где f' - фокусное расстояние объектива, все оптические элементы объектива изготовлены из одного оптического материала, коэффициент дисперсии v_d и температурный коэффициент линейного расширения α_t которого выбираются, соответственно, из условий $60 \!\!\leq\!\! \nu_d \!\!\leq\!\! 70$ и $0.2 \times 10^{-6} < \alpha_t < 8.5 \times 10^{-6} \circ C^{-1}$, при этом механические части объектива также изготовлены из одного материала, температурный коэффициент линейного расширения которого отличается от температурного коэффициента линейного расширения оптического материала не более, чем на $1,5 \times 10^{-6}$ ° С⁻¹.

Стр. 2 из 7

Если в заявляемом зеркально-линзовом объективе вторая линза компенсатора выполнена плосковогнутой, обращенной вогнутостью в сторону пространства предметов, то это характеризует одну из частных форм реализации объектива, обеспечивающую упрощение и более высокую технологичность процесса изготовления объектива.

На фиг. 1 представлена принципиальная оптическая схема зеркально-линзового термонерасстраиваемого длиннофокусного объектива, где 1 - мениск, направленный вогнутостью в сторону пространства предметов, 2 - линза Манжена, представляющая собой вогнутый мениск с отверстием в центральной зоне, обращенный вогнутостью в сторону пространства предметов, 3 - вторичное выпуклое зеркало, обращенное выпуклостью в сторону пространства изображений, двухлинзовый компенсатор, состоящий из первой отрицательной линзы 4, выполненной выпукловогнутой, и второй линзы 5, выполненной отрицательной и плосковогнутой, обращенной вогнутостью в сторону пространства предметов, F' - точка фокуса в плоскости изображения, П - плоскость изображения.

На фиг. 2 представлены зависимость значения концентрации энергии в относительных единицах от радиуса кружка в пятне рассеяния в плоскости изображения для угла поля зрения ω =0°.

На фиг. 3 представлены зависимость значений концентрации энергии в относительных единицах от радиуса кружка в пятне рассеяния в плоскости изображения для угла поля зрения ω =0,62°.

Термонерасстраиваемый длиннофокусный объектив работает следующим образом. Параллельный световой пучок падает на мениск 1, направленный вогнутостью в сторону пространства предметов. После преломления в мениске 1 световое излучение попадает на линзу Манжена 2, представляющую собой вогнутый мениск с отверстием в центральной зоне, обращенный вогнутостью в сторону пространства предметов. Затем, отразившись от линзы Манжена, излучение падает на вторичное выпуклое зеркало 3, обращенное выпуклостью в сторону пространства изображений. Отразившись от вторичного зеркала 3 излучение проходит двухлинзовый компенсатор, состоящий из первой отрицательной линзы 4, выполненной выпукловогнутой и второй линзы 5, выполненной отрицательной. Вторая линза 5 может быть выполнена плосковогнутой, обращенной вогнутостью в сторону пространства предметов. Компенсатор исправляет полевые аберрации объектива. Затем световой пучок фокусируется в плоскости изображения П.

Применение данной оптической схемы позволяет обеспечить высокое качество изображения в широком спектральном диапазоне. Выбор материалов для оптических элементов и механических частей объектива в соответствии с задаваемыми условиями обеспечивает сохранение высокого качества изображения в широком температурном диапазоне. Все оптические элементы объектива изготавливают из одного оптического материала, коэффициент дисперсии уј и температурный коэффициент линейного расширения α_t которого выбирают, соответственно, из условий $60 \le v_d \le 70$ и $0.2 \times 10^{-6} \le \alpha_t \le 8.5 \times 10^{-6} \circ \text{C}^{-1}$. Механические части объектива (корпус, оправы, крепежные элементы) также изготавливают из одного материала, температурный коэффициент линейного расширения которого отличается от температурного коэффициента линейного расширения оптического материала не более, чем на $1.5 \times 10^{-6} \circ \text{C}^{-1}$. За счет близости температурных коэффициентов линейного расширения материалов, из которых изготовлены оптические элементы и механические части объектива, также сохраняется герметизация объектива при значительных перепадах температур. Пример конкретного выполнения.

Ниже приведены расчетные параметры зеркально-линзового объектива, представленного на фиг. 1:

Фокусное расстояние, мм	2000.0
Диафрагменное число	10,0
Угловое поле зрения, угл. гр.	1, 24°
Положение предмета относительно первой поверхности, мм	00
Диаметр входного зрачка, мм	200
Спектральный рабочий диапазон, мкм	0.4-0.75

Весогабаритные размеры конструкции зеркально-линзового объектива:

Размеры объектива, мм	Ø215×500
Масса объектива, кг	9.8

В таблице 1 приведены конструктивные параметры зеркально-линзового объектива по п. 2 формулы изобретения в последовательности хода лучей.

Стр. 3 из 7

Таблица 1. Конструктивные параметры зеркально-линзового объектива

N поз.	N пов.	Радиусы R, мм	Световой диаметр, мм	Толщины оптических элементов, мм	Воздушные промежутки, мм	Марка материала
Мениск 1	1	-477.4	200.0	19.8		ЛК6
	2	-685.6	203.2		425.2	1
Линза	3	-1643.7	229.3	22		
Манжена 2	4	-1186.5	231.1	-22		ЛК6
	5	-1643.7	229.3		-419.2	
Зеркало 3	6	-487.57	63.2		402.1	ЛК6
Линза 4	7	64.14	40.4	11.7		ЛК6
	8	61.24	37.6		5	
Линза 5	9	-148.589	37.6	22.4		ЛК6
	10	00	38.4		88.66	

Конструктивные параметры объектива подобраны так, чтобы исправить сферическую и хроматическую аберрации в широком спектральном диапазоне $0,4\div7,5$ мкм. Значение эквивалентного фокусного расстояния двухлинзового компенсатора находится в пределах от $0,15\mathrm{f}'$ до $20\mathrm{f}'$, где f' - фокусное расстояние объектива, что обеспечивает исправление полевых аберраций. Механические части объектива изготавливаются из титана (Ti) с температурным коэффициентом линейного расширения $8,15\times10^{-6}\mathrm{c}^{-1}$, все оптические элементы из стекла ЛК6, температурный коэффициент линейного расширения которого составляет $8,2\times10^{-60}\mathrm{c}^{-1}$.

Рассчитанные значения концентрации энергии в относительных единицах от радиуса кружка в пятне рассеяния в фокальной плоскости для углов поля зрения ω =0° и ω =0,62°, представленные на фиг. 2 и фиг. 3, показывают высокое качество изображения, обеспечиваемое объективом.

В Таблице 2 приведены значения концентрации энергии в относительных единицах для радиуса кружка 11 мкм в пятне рассеяния для углов поля зрения ω =0° и ω =0,62° зеркально-линзового объектива в диапазоне температур от -40°C до +50°C.

Таблица 2. Рассчитанные значения концентрации энергии объектива в диапазоне

температур от -40°C до +50°C

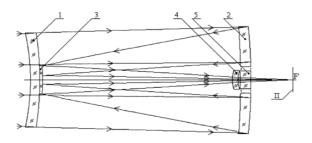
Температура Т, °С	Концентрация энергии в кружке пятна рассеяния радиусом 11 мкм, %		
	ω=0°	ω=0,62°	
-40	82.2	81.7	
-20	82.3	81.8	
0	82.3	81.8	
20	82.4	81.8	
40	82.4	81.8	
50	82.4	81.8	

Крайне незначительные изменения значений концентрации энергии, приведенные в табл.2, свидетельствуют о термонерасстраиваемости объектива в широком диапазоне температур от -40 до 50° C.

Помимо указанной пары материалов - стекло ЛК6 и Ті, возможна такая комбинация материалов как кварцевое стекло (оптический материал) и инвар (материал для механических частей объектива). Коэффициент дисперсии кварцевого стекла v_d =67,6, температурный коэффициент линейного расширения α_t равен $0,4\times10^{-6}$ °C⁻¹, температурный коэффициент линейного расширения сплава инвар $1,3\times10^{-6}$ °C⁻¹.

Таким образом, создан зеркально-линзовый длиннофокусный объектив, термонерасстраиваемый в широком температурном диапазоне (от -40°C до +50°C), обеспечивающий высокое качество изображения в широком спектральном диапазоне. Значительное увеличение фокусного расстояния объектива достигается при упрощении и удешевлении конструкции, уменьшении габаритов и массы.

Формула изобретения


1. Зеркально-линзовый термонерасстраиваемый объектив, содержащий расположенные по ходу луча мениск, обращенный вогнутостью в сторону пространства предметов, линзу Манжена, представляющую собой вогнутый мениск с отверстием в центральной зоне, обращенный вогнутостью в сторону пространства предметов, вторичное выпуклое зеркало, обращенное выпуклостью в сторону пространства изображений, двухлинзовый компенсатор, расположенный между вторичным зеркалом и плоскостью изображения, первая линза которого является отрицательной, отличающийся тем, что первая линза компенсатора выполнена выпукловогнутой, вторая линза компенсатора выполнена отрицательной, а эквивалентное фокусное расстояние двухлинзового компенсатора составляет (0,15-0,20) f', где f' - фокусное расстояние объектива, все оптические элементы объектива изготовлены из одного оптического материала, коэффициент дисперсии $v_{
m d}$ и температурный коэффициент линейного расширения α_t которого выбираются, соответственно, из условий $60 \le v_d \le 70$ и $0.2 \times 10^{-6} \le \alpha_t \le 8.5 \times 10^{-6} \circ C^{-1}$, при этом механические части объектива также изготовлены из одного материала, температурный коэффициент линейного расширения которого отличается от

Стр. 4 из 7

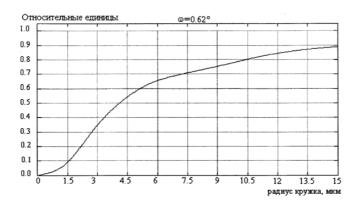
температурного коэффициента линейного расширения оптического материала не более чем на $1,5\times10^{-6}{}^{\circ}\mathrm{C}^{-1}$.

2. Зеркально-линзовый термонерасстраиваемый объектив по п. 1, отличающийся тем, что вторая линза компенсатора выполнена плосковогнутой, обращенной вогнутостью в сторону пространства предметов.

Зеркально-линзовый термонерасстраиваемый объектив

Фиг.1

Стр. 5 из 7


2 Зеркально-линзовый термонерасстраиваемый объектив

Фиг. 2

Стр. 6 из 7

3 Зеркально-линзовый термонерасстраиваемый объектив

Фиг. 3

Стр. 7 из 7